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Abstract—This paper focuses on the definition and identification 
of “Web user-sessions”, aggregations of several TCP connections 
generated by the same source host. The identification of a user-
session is non trivial. Traditional approaches rely on threshold 
based mechanisms. However, these techniques are very sensitive 
to the value chosen for the threshold, which may be difficult to 
set correctly. By applying clustering techniques, we define a 
novel methodology to identify Web user-sessions without 
requiring an a priori definition of threshold values. We define a 
clustering based approach, we discuss pros and cons of this 
approach, and we apply it to real traffic traces. The proposed 
methodology is applied to artificially generated traces to 
evaluate its benefits against traditional threshold based 
approaches. We also analyze the characteristics of user-sessions 
extracted by the clustering methodology from real traces and 
study their statistical properties. Web user-sessions tend to be 
Poisson, but correlation may arise during periods of 
network/hosts anomalous behavior. 
 
Index Terms— Clustering methods, traffic measurement, web 
traffic characterization. 
 

I. INTRODUCTION 
 
The study of telecommunication networks has been often 
based on traffic measurements, which are used to create 
traffic models and obtain performance estimates. While a lot 
of attention has been traditionally devoted to traffic 
characterization at the packet and transport layers (see for 
example [1]–[6]), few are the studies on traffic properties at 
the session/user layer [1], [7], [8]. This is due to the difficulty 
in defining the “session” concept itself [9], which depends on 
the considered application. Applications such as telnet or ssh 
typically generate a single TCP connection per single user-
session, whereas application layer protocols such as HTTP, 
IMAP/SMTP and X11 usually generate multiple TCP 
connections per user-session. Also, the generally accepted 
conjecture that such sessions follow a Poisson arrival process 
(see [10] for example) might have reduced the interest in the 
user-session process analysis. 
 User-session identification and characterization play an 
important role both in Internet traffic modeling and in the 
proper dimensioning of network resources. Besides increasing 
the knowledge of network traffic and user behavior, they 
yield workload models which may be exploited for both 
performance evaluation and dimensioning of network 
elements. Synthetic workload generators may be defined to 
assess network performance, e.g., benchmarking of server 

farms, firewalls, proxies or NATs, as in [11], [12]. Similarly, 
user-session characterization allows researchers to build 
realistic scenarios when assessing the performance of a 
complex network via simulation. The main contributions of 
this paper are the following. First, we adapt classical 
clustering techniques to the described scenario, a nontrivial 
task that requires ingenuity to optimize the performance of 
user-session identification algorithms both in terms of speed 
and precision. By running a clustering algorithm, we avoid 
the need of setting a priori a threshold value, since clustering 
techniques automatically adapt to the actual user behavior, as 
better explained later.  
           Furthermore, the algorithm does not require any 
training phase to properly run. We test the proposed 
methodology on artificially generated traces i) to ensure its 
ability to correctly identify a set of TCP connections 
belonging to the same user-session, ii) to assess the error 
performance of the proposed technique, and iii) to compare it 
with traditional threshold based mechanisms. Analytical 
results are presented to determine the performance of 
threshold based mechanisms. Finally, we run the algorithms 
over real traffic traces, to obtain statistical information on 
user-sessions, such as distributions of i) session duration, ii) 
amount of data transferred in a single session, iii) number of 
connections within a single session. A study of the inter-
arrival times of Web user-sessions is also presented, from 
which it emerges that Web user-sessions tend to be Poisson, 
but correlation may arise due to network/ hosts anomalous 
behavior. Preliminary results on user-sessions statistical 
characterization were presented in [19]. 
 

II RELATED WORK 
 
To identify HTTP user-sessions, traditional approaches rely 
on the adoption of a threshold ŋ.  [7], [8]. TCP connections 
are aggregated in the same session if the inter-arrival time 
between two TCP connections is smaller than the threshold 
value. Otherwise, the TCP connection is associated with a 
newly created user-session. In [7] ŋ is selected to be 100 
while in [8] a threshold ŋ =1s is chosen. Results are obviously 
affected by the choice of ŋ. Indeed, the threshold-based 
approach works well only if the threshold value is correctly 
matched to the values of connection and session inter-arrival 
times. When considering Web users’ characterization, many 
authors perform a data analysis of server logs to define user-
sessions (see [16] for example). While the server log 
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approach can be very effective, it does not scale well and, by 
leveraging on a specific application level protocol, can be 
hardly generalized. Furthermore, since the payload of all 
packets must be analyzed, this approach is not practical when, 
for security or privacy reasons, data payloads (and application 
layer headers)   are   not available. Thus, in this paper, TCP 
headers only are analyzed, limiting privacy issues and 
significantly reducing the probe complexity. Our 
methodology is rather general, and is much more robust than 
any threshold based approach. 
 

III CLUSTERING TECHNIQUES 
 
Our goal is to exploit this property to group connections 
(objects) to identify user-sessions (clusters) in an automatic 
fashion. 
     Let us consider a metric space  X , named sampling space, 
and a set of samples A={x1,x2,….xn, xiεX} which have to be 
grouped (clustered) into ‘K’ subsets: we wish to find a 
partition C={c1,c2,…ck},such that  UiCi=A and Ci∩Cj=Ф.  
        The subsets in the partition are named clusters. Clusters 
contain “similar” samples, whereas samples associated with 
different clusters should be “dissimilar”, the similarity being 
measured via the sample-to-sample and cluster-to-cluster 
distances. 
 

IV. USING CLUSTERING TECHNIQUES ON 
THE MEASUREMENT DATA SET 

A. Clustering Algorithm Description 
 
For a given host with IP address AP*, the set A(IP), whose 
elements are TCP connection opening times within a given 
time-frame, represents the samples of the clustering 
procedure:  
 

 
 
Where ti(fid) is the connection opening time associated with 
sample  i. To take the advantages and to avoid the drawbacks 
of both methodologies, we use a mix of them.  
      Thus, for each A (IP) the following three-step algorithm is 
run to identify user-sessions: 
1) An initial clustering is obtained using a partitional 
algorithm; 
2) A hierarchical agglomerative algorithm is used to 
aggregate the clusters and to obtain a good estimation of the 
final number of clusters Nc ; 
3) a partitional algorithm is used to obtain a fine definition of 
the clusters Nc. 
 
1) Initial Clustering Selection:  
 
We start with a partitional algorithm with K clusters, with 
significantly K smaller than the total number of samples (a 
study on the impact of K is presented in Section VI). To 
efficiently position, in our uni-dimensional metric space, the 

K representatives at procedure startup, we evaluate the 
distance between any two adjacent samples  ti,ti+1.. 

According to the distance metric 

we take the farthest (K-1) 
couples and determine intervals. Let tI,inf ,tI,sup be the inferior 
and superior bounds of interval I; the centroid position of 

each cluster is set to  and the 
partitional algorithm is run for up to 1000 iterations: 
therefore,  K initial clusters are obtained. Each cluster C is 
represented by a small subset R(C) of samples;  
R(C) <=2  is enough in our case, since the metric space is R. . 
Possible choices for the representative samples R(C) are: 
(i) the cluster centroid, which gives the name “centroid” (or 
K-means) to the procedure; (ii) the gth and(100-gth) 
percentiles,  with  g≠0; (iii) the gth and(100-gth) percentiles 
with g=0 , which yields the “single linkage” algorithm. 
 
2) The Hierarchical Agglomerative Procedure: 
 
In the second step, a hierarchical agglomerative algorithm is 
iteratively run, using only the representative samples {R(C)} 
to evaluate the distance between two clusters. Since the 
procedure starts with K initial clusters, the number of steps is 
bounded. At each step s, the hierarchical agglomerative 
procedure merges the two closest clusters; then, distances 
among clusters are recomputed. After K iterations, the 
process ends. The clustering quality indicator function γ(S)  

permits to select the best clustering among those determined 
in the iterative process. Indeed, at each step s, the clustering 
quality must be evaluated to determine if the optimal number 
of clusters has been found. Denote the jth cluster at step s as 
Cj

(s) ; at each step, the procedure evaluates the function  γ(S): 
 
 

 

 
 

 
 

And   is defined according to (1) 
 
A sharp increase in the value of  γ(S) is an indication that the 
merging procedure is artificially merging two clusters which 
are too far apart. 
 
. The optimal number of clusters Nc is determined as 
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Which is computed for the index S that corresponds to the 
sharpest increase in  γ(S) A typical evolution of the function 
γ(S)  is reported in Fig. 1, where the sharpest increase is 
clearly visible.  
 
The plot refers to an artificial trace obtained as described in 
Section VI, and shows that for about 1000 steps the 
aggregation of the two closest clusters is clearly beneficial in 
terms of clustering quality. Then, the aggregation process 
merges two clusters which are too far apart, forcing a sudden 
increase in dmin

(s)  at step s, and, therefore, in γ(S). . When  γ(S) 
reaches the maximum, the merging procedure is forcing an 
artificial aggregation of two distinct clusters. Other errors are 
induced later in the iterative aggregation process: although 
clearly visible in Fig. 1, they have a minor impact on the 
quality indicator function. 

 
 
3) Final Clustering Creation: A partitional clustering 
procedure is run over the original data set, which includes all 
samples using the optimal number of clusters Nc determined 
so far and the same choice of cluster representatives adopted 
in the first step. A fixed number of iterations is run to obtain a 
final refinement of the clustering definition. This phase is not 
strictly required, since at the end of the hierarchical 
agglomerative procedure a partition is already available. 
However, it produces clusters of real samples instead of 
representatives (which may not be data points). Furthermore, 
the computational cost of this  Phase is almost negligible 
compared to previous. 
  

V  PERFORMANCE ANALYSIS: ARTIFICIAL 
TRAFFIC 

Let us consider a simple artificial trace in which a single user 
generates sessions according to an ON/OFF process. The 
session ON and OFF periods are assumed exponentially 

distributed, with whereas ranges between 30 s 
and 2000 s. During each session ON period, a random number 
of TCP connections is generated, with mean inter-arrival time 

we consider both exponential and Pareto 
distributions. 

 
Fig 2.clustering sensitivity to initial no clusters K for exponential connection 
interarrivals 
 
      Parameter Sensitivity 
We initially evaluate the influence on performance results of 
the values chosen for i) the initial number of clusters K , used 
in the first clustering phase, and ii) the percentile g , used in 
the hierarchical agglomerative clustering phase. K is not a 
critical parameter, provided it is sufficiently larger than the 
number of sessions. In all the experiments, we choose 
K=10000 for simplicity as shown in fig 2.  
Fig. 3 shows instead the influence of the parameter, g that 
determines the value of the percentile used to select the 
cluster representatives in the cluster-to-cluster distance. We 
report the single linkage algorithm, which takes the two 
extreme values in the sample distribution as cluster 
representatives, The better accuracy of the single linkage 
algorithm is mainly due to the fact that gth percentile 
algorithms clusters real samples in the data set.  

 
Fig 3: clustering sensitivity to percentile g for exponential connection inter-

arrivals 
 

VI PERFORMANCE ANALYSIS OF TRACE 
DATA SET 

    Web User-Session Characterization 
Fig. 4 reports the PDF of the number of different server IP 
addresses in each session. Roughly 66% of session’s 
aggregate connections from a single server, and about 22% of 
sessions refer to only two servers. However, the PDF has a 
heavy-tail, as highlighted by the complementary CDF, which 
shows that the percentage of sessions contacting more than 
different servers is not negligible. 
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Fig 4: PDF of no. of different server IP addresses per session. 

Complementary CDF in inset. 

 
Fig 5: PDF of session length. Complementary CDF in inset. 

 

Fig 5 shows the session duration PDF. The two different 
distributions reflect the effect of different definitions of Web 
user-sessions. Indeed, user-session duration may be defined 
as: the time between the first SYN segment of the first 
connection and (i) the last segment observed during the last 
connection tear-down, for “protocol sessions”; (ii) the last 
segment carrying payload of the last connection for 
“application sessions”. Therefore, using the notation 
introduced in Section IV, for a given session/cluster C, we 
can define the protocol session duration  ∆Te and the 
application session duration as ∆Td as 

   
The protocol session definition is relevant, for example, when 
either Web servers or client resources are considered, since 
TCP connections must be managed until the tear-down 
procedure is completed. On the contrary, the application 
session definition is relevant for users, since users are 
satisfied when all data are correctly sent/received. The 
protocol session distribution has obviously a larger support, 
but also biased peaks at 20 s, 60 s and 3600 s. They 
correspond to application layer timers imposed by Web 
browsers or HTTP servers which trigger the connection tear-
down procedure after idle periods.  
      For example, Web servers may wait for a timer to expire 
(usually after 20 seconds) before closing the connection. 
Similarly, HTTP 1.1 and Persistent-HTTP 1.0 protocols use 
an additional timer, usually set to a multiple of 60 seconds. 

Therefore, the protocol session duration highlights the bias 
induced by those timers. The bias disappears when 
application session duration is evaluated. Session duration 
distributions have a large support, showing large variability in 
user’s behavior. Indeed, there is a  large percentage of very 
short sessions (that last less than few seconds), but also user 
activities that last for several hours. The tail of the 
complementary CDF shown in the inset highlights the heavy 
tailed distribution of session duration. 
         
Fig 6 reports the PDF of the amount of data exchanged from 
client to server Dc (dashed lines) and server to client Ds (solid 
lines). For a given session/cluster C,  
 

and  
 
 As expected, more data are transferred from servers to 
clients, and the distribution tail is heavier; the number of 
sessions transferring more than 10 Mbytes in the server-client 
direction is not negligible.  
    
 The initial part of both PDFs presents a number of peaks. 
Investigating further, we discovered that peaks are due to the 
identification of sessions which are not generated by users, 
but instead by automatic reload procedure imposed by the 
Web page being displayed. For example, news or trading on-
line services impose periodic updates of pages, which force 
the client to automatically reload the pages. If the automatic 
reload is triggered periodically, the clustering algorithm may 
identify a separate session for each connection, thus causing a 
bias in the session data distribution. 

 
Fig 6.PDF of client –to-server and server-to- client data sent in each session. 

Complementary CDF in inset. 

 
Fig 7: PDF of no. of TCP connections in each session. Complementary CDF 

in inset. 
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This is clearly evident also from Fig. 7, which reports the 
number of TCP connections per user-session. Indeed, more 
than 55% of sessions include only two TCP connections. 
Furthermore, most of the identified 
Sessions are composed by very few connections (about 33% 
by 4 connections or less). This demonstrates that:  i) the client 
is usually able to  
obtain all the required data using few TCP connections, ii) the 
number of required external objects is limited and iii) the time 
spent by the users over one Web page is large enough to 
define each Web transaction as a session. The CDF, reported 
in the inset, shows a linear trend, highlighting that the 
distribution has a heavy-tail. 
 
Session Inter-Arrivals Statistical Properties 

Finally, statistical properties of session inter-arrival times are 
investigated. A session arrival trace is obtained by 
superimposing in time all identified sessions during the same 
time period. 
      Fig. 8 reports the Q-Q plot of the session inter-arrival 
distribution with respect to the best fitted Weibull distribution 
over the same data set. The choice of the Weibull model 
stems from the fact that connection arrivals fit quite well a 
Weibull distribution with a heavy-tail [26]. The Weibull 
distribution is characterized by the so called “shape” and 
“scale” parameters. When the shape parameter, named in this 
paper, is set to 1, the Weibull distribution degenerates into an 
exponential distribution. When ‘a’ is smaller than 1, the tail of 
the distribution is heavy, while for values of larger than 1 the 
shape of the distribution assumes a dumbbell form. 
 

 
 

 
Fig 8 fit of user-session inter-arrivals to a Weibull distribution: normal 

working day in the top plot, and during a worm attack on the bottom plot. 

 

VII    CONCLUSION 
Clustering techniques were applied to a large set of real 
Internet traffic traces to identify Web user-sessions. A novel 
clustering methodology was proposed and compared with the 
classical threshold based scheme. The effectiveness and 
robustness of the proposed clustering methodology was first 
assessed by applying it to an artificial data set, and showing 
its ability in the identification of Web user sessions without 
requiring any a priori definition of threshold values. Then, 
the proposed clustering methodology was applied to 
measured data sets to study the characteristics of Web user 
sessions. User-sessions were shown to be Poisson. However, 
correlation arises when an anomalous network behavior is 
induced, for example, by a worm infection. The analysis of 
the identified user-sessions shows a wide range of diverse 
behaviors that cannot be captured by any threshold based 
scheme. The clustering algorithm proposed in this paper can 
be helpful in studying traffic properties at the user level, and 
could be easily extended to deal with other types of user-
sessions, not necessarily related to Web traffic. 
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